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Abstract

Discrete maps with long-term memory are obtained from nonlinear differential
equations with Riemann-Liouville and Caputo fractional derivatives. These
maps are generalizations of the well-known universal map. The memory means
that their present state is determined by all past states with special forms of
weights. To obtain discrete maps from fractional differential equations, we
use the equivalence of the Cauchy-type problems and to the nonlinear Volterra
integral equations of the second kind. General forms of the universal maps
with memory, which take into account general initial conditions for the cases
of the Riemann-Liouville and Caputo fractional derivative, are suggested.

PACS numbers: 05.45.—a, 45.10.Hj
Mathematics Subject Classification: 26A33, 37E05

1. Introduction

A dynamical system consists of a set of possible states, together with a rule that determines the
present state in terms of past states. If we require that the rule be deterministic, then we can
define the present state uniquely from the past states. A discrete-time system without memory
takes the current state as input and updates the situation by producing a new state as output.
All physical classical models are described by differential or integro-differential equations,
and the discrete-time systems can be considered as a simplified version of these equations. A
discrete form of the time evolution equation is called the map. Maps are important because
they encode the behavior of deterministic systems. The assumption of determinism is that the
output of the map can be uniquely determined from the input. In general, the present state is
uniquely determined by all past states, and we have a discrete map with memory. Discrete
maps are used for the study of evolution problems, possibly as a substitute of differential
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equations [1-3]. They lead to a much simpler formalism, which is particularly useful in
simulations. The universal discrete map is one of the most widely studied maps. In this paper,
we consider discrete maps with memory that can be used to study solutions of fractional
differential equations [4-7].

The nonlinear dynamics can be considered in terms of discrete maps. Itis a very important
step in understanding the qualitative behavior of systems described by differential equations.
The derivatives of non-integer orders are a generalization of the ordinary differentiation of
integer order. Fractional differentiation with respect to time is characterized by long-term
memory effects. The discrete maps with memory are considered in [8—14]. The interesting
question is a connection of fractional differential equations and discrete maps with memory.
It is important to derive discrete maps with memory from the equation of motion.

In [14], we prove that the discrete maps with memory can be obtained from differential
equations with fractional derivatives. The fractional generalization of the universal map was
obtained [14] from a differential equation with Riemann-Liouville fractional derivatives. The
Riemann-Liouville derivative has some notable disadvantages such as the hyper-singular
improper integral, where the order of singularity is higher than the dimension, and nonzero of
the fractional derivative of constants, which would entail that dissipation does not vanish for a
system in equilibrium. The desire to formulate initial value problems for mechanical systems
leads to the use of Caputo fractional derivatives rather than the Riemann-Liouville fractional
derivative.

It is possible to state that the Caputo fractional derivatives allow us to give more
clear mechanical interpretation. At the same time, we cannot state that the Riemann-—
Liouville fractional derivative does not have a physical interpretation and that it shows
unphysical behavior. Physical interpretations of the Riemann-Liouville fractional derivatives
are more complicated than Caputo fractional derivatives. But the Riemann-Liouville fractional
derivatives naturally appear for real physical systems in electrodynamics. We note that the
dielectric susceptibility of a wide class of dielectric materials follows, over extended frequency
ranges, a fractional power-law frequency dependence that is called the ‘universal’ response
[15, 16]. As was proved in [17, 18], the electromagnetic fields in such dielectric media are
described by differential equations with Riemann—Liouville fractional time derivatives. These
fractional equations for ‘universal’ electromagnetic waves in dielectric media are common to
a wide class of materials, regardless of the type of physical structure, chemical composition,
or of the nature of the polarizing species. Therefore, we cannot state that Riemann—Liouville
fractional time derivatives do not have a physical interpretation. The physical interpretation
of these derivatives in electrodynamics is connected with the frequency dependence of the
dielectric susceptibility. As a result, the discrete maps with memory that are connected with
differential equations with Riemann—Liouville fractional derivatives are very important to
physical applications, and these derivatives naturally appear for real physical systems.

For computer simulation and physical application, it is very important to take into account
the initial conditions for discrete maps with memory that are obtained from differential
equations with Riemann—Liouville fractional time derivatives. In [14], these conditions are
not considered. In this paper to take into account the initial condition, we use the equivalence
of the differential equation with Riemann-Liouville and Caputo fractional derivatives and the
Volterra integral equation. This approach is more general than the auxiliary variable method
that is used in [14]. The proof of the result for Riemann-Liouville fractional derivatives
is more complicated in comparison with the results for the Caputo fractional derivative. In
this paper, we prove that the discrete maps with memory can be obtained from differential
equations with the Caputo fractional derivative. The fractional generalization of the universal
map is obtained from a fractional differential equation with Caputo derivatives.
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The universal maps with memory are obtained by using the equivalence of the fractional
differential equation and the Volterra integral equation. We reduce the Cauchy-type problem
for the differential equations with the Caputo and Riemann-Liouville fractional derivatives
to nonlinear Volterra integral equations of second kind. The equivalence of this Cauchy-
type problem for the fractional equations with the Caputo derivative and the correspondent
Volterra integral equation was proved by Kilbas and Marzan in [19, 20]. We also use that
the Cauchy-type problem for the differential equations with the Riemann—Liouville fractional
derivative can be reduced to a Volterra integral equation. The equivalence of this Cauchy-type
problem and the correspondent Volterra equation was proved by Kilbas, Bonilla and Trujillo
in [21, 22].

In section 2, differential equations with integer derivative and universal maps without
memory are considered to fix notations and provide convenient references. In section 3,
fractional differential equations with the Riemann—Liouville derivative and universal maps
with memory are discussed. In section 4, the difference between the Caputo and Riemann—
Liouville fractional derivatives is discussed. In section 5, fractional differential equations
with the Caputo derivative and correspondent discrete maps with memory are considered. A
fractional generalization of the universal map is obtained from kicked differential equations
with the Caputo fractional derivative of order 1 < « < 2. The usual universal map is a special
case of the universal map with memory. Finally, a short conclusion is given in section 6.

2. Integer derivative and universal map without memory

In this section, differential equations with derivative of integer order and the universal map
without memory are considered to fix notations and provide convenient references.
Let us consider the equation of motion

DXx(1) + KGlx(1)] Y 8 (% - k) =0 (1)
k=1

in which perturbation is a periodic sequence of delta-function-type pulses (kicks) following
with period 7 = 27/v, K is an amplitude of the pulses, D? = d*/dt?, and G[x] is some
real-valued function. It is well known that this differential equation can be represented in the
form of the discrete map

Xn+l — Xp = Pn+1T, Pn+l — Pn = —KT G[xn]~ (2)

Equations (2) are called the universal map. For details, see for example [1-3].

The traditional method of derivation of the universal map equations from the differential
equations is considered in section 5.1 of [2]. We use another method of derivation of these
equations to fix notations and provide convenient references. We obtain the universal map by
using the equivalence of the differential equation and the Volterra integral equation.

Proposition 1. The Cauchy-type problem for the differential equations

D!x(t) = p(1), 3)

D} p(t) = —KGlx(1)] ) 8 (% - k) “4)
k=1

with the initial conditions

x(0) = xo, p©0) = po &)
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is equivalent to the universal map equations of the form

Xow1 =X+ po(n+ DT — KT* Y Gl (n+1—k), (6)
k=1
Prt=po— KT Y Glxl. (7)
k=1

Proof. Consider the nonlinear differential equation of second order

D;x(1) = Glt, x(1)], O<t<ty) ®)
on a finite interval [0, #¢] of the real axis, with the initial conditions
X0 =x. (D)) = po. ©)

The Cauchy-type problem of the form (8), (9) is equivalent to the Volterra integral equation
of second kind

x(1) :x0+p0t+/ dr G[z, x(7)] (¢t — 7). (10)
0

Using the function

> t
Glt.x(t)] = —KG[x(] Y _ 8 <? - k) ,

k=1
fornT <t < (n+1)T, we obtain

x(t) =xo+pot — KT Y _ GIx(kT)](t — kT). (11)
k=1

For the momentum p(t) = D/x(t), equation (11) gives

p(t) =po— KT Y Glx(kT)]. (12)
k=1

The solution of the left side of the (n + 1)th kick

Yurt = Xty = 0) = lim x(T(n+1) —e), (13)
e—0+
Past = Pl —0) = lim p(T(n+1) =), (14)

where 7,,1 = (n + 1)T, has the form (6) and (7).
This ends the proof. O

Remark 1. We note that equations (6) and (7) can be rewritten in the form (2). Using
equations (6) and (7), the differences x,+; — x, and p,+; — p, give equations (2) of the
universal map.
Remark 2. If G[x] = —x, then equations (2) give the Anosov-type system

Xn+l — Xn = pn+lTa Pn+l — Pn = KTxn- (15)
For G[x] = sin(x), equations (2) are

Xp+l — Xn = P T, Pn+1 — Pn = —KT sin(x,). (16)

This map is known as the standard or Chirikov—Taylor map [1].
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3. Riemann-Liouville fractional derivative and universal map with memory

In this section, we discuss nonlinear differential equations with the left-sided Riemann—
Liouville fractional derivative o Dy’ defined for o > 0 by

Dex(t) = D o x5y = — & f _xmdr n—1<a<n, (7
x(1) = x(t) = — , n—1<a<n),
0 0% T —a)di J, (t— g)e—n
where D' = d"/dt", and (I is a fractional integration [4, 6, 7].

We consider the fractional differential equation

oD x(t) = Glt, x(1)], (18)

where G[t, x(¢)] is a real-valued function, 0 < n — 1 < o < n, and r > 0, with the initial
conditions

(ODfikx)(O"'):Ck, k=1,...,n. (19)

The notation (o D#*x)(0+) means that the limit is taken at almost all points of the right-sided
neighborhood (0, 0 + €), ¢ > 0, of zero as follows:

(0D *x)(04) = lim oDf x(0),  (k=1....n—1),
t—0+

(6D2"x)(0+) = lim oI/~ *x(1).
t—0+

The Cauchy-type problem (18) and (19) can be reduced to the nonlinear Volterra integral
equation of second kind
n t
(1) = Z Ck jak 1 / Glr, X(T)ldta 20)
— INoa—k+1) M Jo @—1)"
where ¢+ > 0. The result was obtained by Kilbas, Bonilla and Trujillo in [21, 22]. For
o = n = 2, equation (20) gives (10).

The Cauchy-type problem (18) and (19) and the nonlinear Volterra integral equation (20)
are equivalent in the sense that, if x(t) € L(0, #) satisfies one of these relations, then it also
satisfies the other. In [21, 22] (see also theorem 3.1. in section 3.2.1 of [7]), this result is
proved by assuming that the function G|, x] belongs to L(0, ) forany x € W C R.

Let us give the basic theorem regarding the nonlinear differential equation involving the
Riemann—Liouville fractional derivative.

Kilbas-Bonilla-Trujillo theorem. Let W be an open setinR and let G[t, x], wheret € (0, 17]
and x € W, be a real-valued function such that G[t, x] € L(0, tf) for any x € W. Let x(t)
be a Lebesgue measurable function on (0,1t7). If x(t) € L(0, ty), then x(t) satisfies almost
everywhere equation (18) and conditions (19) if, and only if, x(t) satisfies almost everywhere
the integral equation (20).

Proof. This theorem is proved in [21, 22] (see also theorem 3.1. in section 3.2.1 of [7]). O

In [14] we consider a fractional generalization of equation (1) of the form

> t
oD¥x(t) + K G[x(1)] ZS (? — k) =0, (I<a<2), (21)
k=1

where ¢ > 0, and ¢ Dy is the Riemann-Liouville fractional derivative defined by (17). Let us
give the following theorem for equation (21).
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Proposition 2. The Cauchy-type problem for the fractional differential equation of the form
(21) with the initial conditions

(0D 'x)(0+) =, (, D8 72x)(04) = (017 7x) (0+) = ¢ (22)

is equivalent to the equation

n

(6] a2 KT

_ C_] a—1 e o _ a—1
x(t) = F(a)t + M l)t T @ ; Glx(kT)] (t —kT)* ", (23)
where nT <t < m+1)T.
Proof. Using the function
Glt,x(1)] = —KGlx] ZB (% — k) , (24)

k=1

equation (21) has the form of (18) with the Riemann—Liouville fractional derivative of order
o, where 1 < a < 2. It allows us to use the Kilbas—Bonilla-Trujillo theorem. As a result,
equation (21) with initial conditions (19) of the form (22) is equivalent to the nonlinear Volterra
integral equation

e, @2 e K[ Cets (T
0= p T r F(a);/o dr Glx(D)](r — 1) 8<T k) (25)

where t > 0. If nT <t < (n + 1)T, then the integration in (25) with respect to t gives (23).
This ends the proof. |

To obtain equations of discrete map a momentum must be defined. There are two
possibilities of defining the momentum:

p@) = oD 'x(1), p(t) = D/x(). (26)

Let us use the first definition. Then the momentum is defined by the fractional derivative
of order @ — 1. Using the definition of the Riemann—Liouville fractional derivative (17) in the
form

oDx(t) = D? oI*“x (1), (1<a<?2), (27)

we define the momentum

p(t) = oD 'x(t) =

I d/ x(r) de (I<a<2), (28)

rQ—aydrJ, (t -1
where x(7) is defined for t € (0, t). Then
oD x(1) = D/ p(), (1<a<2). (29)

Using momentum p(¢) and coordinate x(¢), equation (21) can be represented in the
Hamiltonian form

oD x (1) = p(1), (30)

D!p(t) = —KGlx(1)] ) 8 (% — k) ) 31

k=1
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Proposition 3. The Cauchy-type problem for the fractional differential equations of the form
(30) and (31) with the initial conditions

(0D 'x)(04) = c, (0DF2x)(04) = (oI} *x)(0+) = ¢ (32)

is equivalent to the discrete map equations

T ! T ? ., KT*
m+D)*"" + ——m+ D" —
(o) M—1) I'(a)

Xnsl =

Y Glulm+1—k*',  (33)
k=1

pri=c1— KT Y Glx]. (34)
k=1

Proof. We use proposition 2 to prove this statement. To obtain an equation for the momentum
(28), we use the following fractional derivatives of power functions (see section 2.1 in [7]):

I'(8)

DYt —a)P! = t—a)f~17, >0, >0, t>a, 35
oD (t —a) l"(ﬁ—oe)( a) o B a (35)
oDt F =0, k=1,....,n, n—1<a<n. (36)
These equations give

oD 1* ! =T (a), oDf1* =0

and
DYt —a)* ' =T(a).

We note that equation (23) for x(t) can be used only if t € (nT, t), where nT <t <
(n+ 1)T. The function x(7) in the fractional derivative oD of the form (28) must be defined
for all = € (0, ). We cannot take the derivative oD of the functions (t — kT)*~! that are
defined for t € (kT, t). In order to use equation (23) on the interval (0, ¢), we must modify
the sum in equation (23) by using the Heaviside step function. Then equation (23) has the

form
n

a—1 2 a—2 KT

C_l -z I _ a—1 _
F(a)T + T - 1)7,' r@ Z Glx(kT)] (v —kT)* " 6(r — kT), (37)

x(1) =

where 7 € (0, t). Using the relation
oD (1 —a)* 10t —a)) = D (t —a)* ' =T (o), (38)
equations (28) and (37) give

pt)=ci—KT Y Glx(kT)], (39)
k=1

where nT <t < (n+ 1)T. Then the solution of the left side of the (n + 1)th kick

puni=c1 = KT ) Glul. (40)
k=1
As a result, we obtain a universal map with memory in the form of equations (33)
and (34).
This ends the proof. ]
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Remark 3. For @ = n = 2 equations (33) and (34) give the usual universal map (6) and (7).
Remark 4. We note that the map (33) and (34) with
¢ = p1, =0

was obtained in [14] in the form

Tafl n
il = —— Von —k+1), 41
Sl = T ;pkﬂ (n ) (41)
Pust = pn — KTG(x,), (1<a<2), 42)

where p; = ¢y, and the function V,(z) is defined by
Vo(@) =2""= (2= D", (z=1). (43)
In [14], we obtain these map equations by using an auxiliary variable & (¢) such that
SD g (t) = x(1).

The nonlinear Volterra integral equations and the general initial conditions (32) are not used
in [14]. In the general case, the fractional differential equation of the kicked system (21) is
equivalent to the discrete map equations

To-1 n CZToz—Z 5
il = —— Von —k+1)+ ———(n+1)“"~, 44
Xt F(a);lﬁkn (n * Ta @+ (44)
P+t = pn — KT G(xy), (I <a<?), (45)

where p; = c¢;. Here we take into account the initial conditions (32). The second term of the
right-hand side of equation (44) is not considered in [14]. Using —1 < o — 2 < 0, we have

lim (n+1)*2=0.

n—0o0

Therefore, the case of large values of n is equivalent to ¢, = 0.

Let us give the proposition regarding the second definition of the momentum p(t) =
Dtlx(t).

Proposition 4. The Cauchy-type problem for the fractional differential equations

Dlx(t) = p@t), (46)
[t
oD x(t) = —KG[x(1)] X_:(S (? — k) , l<a<?2) (47)

k=1

with the initial conditions
(0D 'x)(04) = c, (0DF2x)(04) = (oI} *x)(0+) = c> (48)
is equivalent to the discrete map equations

a—1 CzTot—Z T®

a—1 a=2 7
r@) (n+1) +—F(a— 1)(n+1) o)

Xn+l =

> Gl +1-k*", (49
k=1
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T2 o —2)T*3

_are— s -
Pn+1_r(a—1)(n+1) + e )
KTafl n
CT(—1) > Gludmn+1 -k -
k=1

Proof. We define the momentum

p(t) = D/x(1).

IfnT <t < (n+1)T, then the differentiation of (23) with respect to ¢ gives

n

Ci a2, ola—2) , 4 _ KT

_ _=-r s _ a—2
PO =50 Th Te =D Fa—D ; Glx(kT)1 (t — kT)* % (51)
Here we use the relation
Na)=(a—DI'(x —1), (1 <a<?2).

Using equations (23) and (51), we can obtain the solution of the left side of the (n + 1)th kick
(13) and (14). As aresult, we have equations (49) and (50).
This ends the proof. |

Remark 5. Equations (49) and (50) describe a generalization of equations (6) and (7). If
o =n =2and ¢, = x9, c; = po, then equation (49) gives (6) and (7).
Remark 6. In equations (50) and (51), we can use

ol@—2) c

Fa—1) T@-2)

forl <a < 2.

Remark 7. If we use the definition p(r) = D}x(t), then the Hamiltonian form of the
equations of motion will be more complicated than (30) and (31) since

D? o I7x(t) # oI *D?x(1).

Remark 8. Note that we use the usual momentum p(¢) = D,lx(t). In this case, the values
c1 and ¢; are not connected with p(0) and x(0). If we use the momentum p(¢) = on”lx(t),
then c¢; = p(0).

4. Riemann-Liouville and Caputo fractional derivatives

In [14] we consider nonlinear differential equations with Riemann-Liouville fractional
derivatives. The discrete maps with memory are obtained from these equations. The problems
with initial conditions for the Riemann-Liouville fractional derivative are not discussed.

The Riemann-Liouville fractional derivative has some notable disadvantages in
applications in mechanics such as the hyper-singular improper integral, where the order of
singularity is higher than the dimension, and nonzero of the fractional derivative of constants,
which would entail that dissipation does not vanish for a system in equilibrium. The desire
to use the usual initial value problems for mechanical systems leads to the use of Caputo
fractional derivatives [7, 6] rather than the Riemann—Liouville fractional derivative.
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The left-sided Caputo fractional derivative [7, 23-25] of order & > 0 is defined by
1 "' dr D" f(1)
EDYf(1) = / f = oD (1), 52
0 tf() F(n—()l) o ([—T)a7n+1 04y [f() ( )

wheren —1 < o < n, and oI/ is the left-sided Riemann-Liouville fractional integral of order
o > 0 that is defined by

N 1 " f(o)dr
ol f(t)_F(a)/o L o (53)

This definition is, of course, more restrictive than the Riemann-Liouville fractional
derivative [4, 7] in that it requires the absolute integrability of the derivative of order n.
The Caputo fractional derivative first computes an ordinary derivative followed by a fractional
integral to achieve the desire order of fractional derivative. The Riemann—Liouville fractional
derivative is computed in the reverse order. Integration by part of (52) will lead to

n—1 k—a
C e _ ne _ ! )
EDx(1) = ¢Dx(t) kg(‘:F(k—a+1)x (0). (54)

It is observed that the second term in equation (54) regularizes the Caputo fractional derivative
to avoid the potentially divergence from singular integration at = 0. In addition, the Caputo
fractional differentiation of a constant results in zero

c

¢DfC =0.
Note that the Riemann-Liouville fractional derivative of a constant need not be zero, and we
have

tfoz
oDfC = ——C.
'l —ow
If the Caputo fractional derivative is used instead of the Riemann-Liouville fractional

derivative, then the initial conditions for fractional dynamical systems are the same as those
for the usual dynamical systems. The Caputo formulation of fractional calculus can be more
applicable in mechanics than the Riemann-Liouville formulation.

5. Caputo fractional derivative and universal map with memory

In this section, we study a generalization of differential equation (1) by the Caputo fractional
derivative. The universal map with memory is derived from this fractional equation.
We consider the nonlinear differential equation of order o, where 0 <n — 1 <o < n,

6 Dx(0) = Glt, x(0)], O <1<y, (55)
involving the Caputo fractional derivative g DY on a finite interval [0, 7] of the real axis, with
the initial conditions

(Dfx)(0) = ¢, k=0,....,n—1. (56)
Kilbas and Marzan [19, 20] proved the equivalence of the Cauchy-type problem of the form
(55), (56) and the Volterra integral equation of second kind

n—1

Ck _k 1 ' a—1
x(t) = —t"+ — dr Gz, x(0)](t — 1) &)
kX:(; k! ') Jo

in the space C"![0, tr]. For o = n = 2 equation (57) gives (10).

10



J. Phys. A: Math. Theor. 42 (2009) 465102 Vasily E Tarasov

Let us give the basic theorem regarding the nonlinear differential equation involving the
Caputo fractional derivative.

Kilbas—Marzan theorem. The Cauchy-type problem (55) and (56) and the nonlinear Volterra
integral equation (57) are equivalent in the sense that, if x(t) € C[0, t7] satisfies one of these
relations, then it also satisfies the other.

Proof. 1In [19, 20] (see also [7], theorem 3.24.) this theorem is proved by assuming that a
function G[t, x] for any x € W C R belongs to C,(0,77) with0 < y < 1, y < a. Here
C, (0, ty) is the weighted space of functions f[¢] given on (0, z7], such thatt” f[t] € C(0, ty).
This ends the proof. |

We consider the fractional differential equation of the form

§Dex(t) + KGlx(D] Y 8 (% - k) =0, (1 <a<?2), (58)
k=1

where g Dy is the Caputo fractional derivative, with the initial conditions
x(0) = xo, (D'x)(0) = po. (59)

Using p(t) = D,‘x(t), equation (58) can be rewritten in the Hamilton form.

Proposition 5. The Cauchy-type problem for the fractional differential equations
D/x(t) = p(), (60)
=\ [t
gD,“1P(¢)=—KG[x(t)]ZS<7—k), (I<a<?2) ©1)
k=1

with the initial conditions
x(0) = xo, p0) = po (62)

is equivalent to the discrete map equations

Xas1 = X0+ po(n + DT — o (n+1—=k)*"'Glxel, (63)
(@) =
KTot—l n
il = Do — ————— 1 — k)" 2G[x;]. 64
Prst = po F(a—l)k;(n+ )*2Glx] (64)

Proof. We use the Kilbas—Marzan theorem with the function
o0
1t
Glt,x())] = —KG[x(t S|=—-k).
[1, x(0)] [x()]; (T )

The Cauchy-type problem (58) and (59) is equivalent to the Volterra integral equation of
second kind

K

x(t) = xo + pot — m ;/0 dr(t — 1)* ' Gx(7)]8 (% — k) , (65)

in the space of continuously differentiable functions x(¢) € C'[0, #/].

11
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IfnT <t < (n+1)T, then equation (65) gives
KT n _l
x(t) = xo + pot — mZ(r — kT)* ' Gx(kT)]. (66)
(07
k=1

We define the momenta
p(t) = D} x(1). (67)
Then equations (66) and (67) give

K

T < 72
p(t) = po— =D > —kT)*GIx(kT)), (nT <t < (n+1DT), (68)
k=1

where we use I'(a) = (¢ — 1)I"'(x — 1).
The solution of the left side of the (n + 1)th kick (13) and (14) can be represented by
equations (63) and (64), where we use the condition of continuity x (¢, + 0) = x(t, — 0).
This ends the proof. ]

Remark 9. Equations (63) and (64) define a generalization of the universal map. This
map is derived from a fractional differential equation with Caputo derivatives without any
approximations. The main property of the suggested map is a long-term memory that means
that their present state depends on all past states with a power-law form of weights.

Remark 10. If @ = 2, then equations (63) and (64) give the universal map of the form (6)
and (7) that is equivalent to equations (2). As a result, the usual universal map is a special
case of this universal map with memory.

Remark 11. By analogy with proposition 5, it is easy to obtain the universal map with
memory from fractional equation (58) with o > 2.

6. Conclusion

The suggested discrete maps with memory are generalizations of the universal map. These
maps describe fractional dynamics of complex physical systems. The suggested universal
maps with memory are equivalent to the correspondent fractional kicked differential equations.
We obtain a discrete map from a fractional differential equation by using the equivalence of
the Cauchy-type problem and the nonlinear Volterra integral equation of second kind. An
approximation for fractional derivatives of these equations is not used.

It is important to obtain and to study discrete maps which correspond to the real physical
systems described by the fractional differential equations. In mechanics and electrodynamics,
we can consider viscoelastic and dielectric materials as media with memory. We note that the
dielectric susceptibility of a wide class of dielectric materials follows, over extended frequency
ranges, a fractional power-law frequency dependence that is called the ‘universal’ response
[15, 16]. As was proved in [17, 18], the electromagnetic fields in such dielectric media
are described by differential equations with fractional time derivatives. These fractional
equations for electromagnetic waves in dielectric media are common to a wide class of
materials, regardless of the type of physical structure, chemical composition, or of the nature
of the polarizing species, whether dipoles, electrons or ions. We hope that it is possible to
obtain the discrete maps with memory which correspond to the real dielectric media described
by the fractional differential equations.
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